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Tunnelling through moving barriers 
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$Surface Science Research Centre and Department ofchemistry, University of Liverpool, 
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Received 17 January 1991 

Abstract. In this paper we present a variety of theoretical methods to treat the general 
problem of a quantum panicle interacting with a time-dependent barrier. Assuming a 
sinusoidal form forthe timedependence, we discuss theclassical, semiclassical andquantum 
solutions for two specific problems: a barrier whose amplitude is modulated, and one 
whose mean position changes. While the classical solutions to these problems are quite 
different, the time-independent quantum solutions appear almost identical. I t  is only when 
the particle is modelled as a wavepacket that the quantum solutions behave like their 
classical counterparts. 

1. Introduction 

Tunnelling is a basic quantum mechanical phenomenon with many interesting applica- 
tions [l]. Time-dependent barriers appear in the tunnelling context in two different 
physical situations. First, when an incident particle loses or gains energy in the 
tunnelling process the situation can be described in the language of inelastic scattering 
and non-conservation of particle energy can be modelled by a time-dependent potential 
barrier. If the potential has a time modulated term of the form V ( x )  cos or, then the 
particle energy changes by discrete quanta of frequency w,  i.e., by energy nhw. Biittiker 
and Landauer [2,3] have studied this problem at  some length, with an aim to identify 
the tunnelling traversal time, a problem having a rich history [4,5]. They explicitly 
evaluated the strength of the ihw sidebands in the limit of a weak harmonic perturba- 
tion and from these intensities defined a tunnelling time. Their formalism has recently 
been used and further developed by other workers [6]. 

Secondly, in many chemical reactions involving hydrogen, particularly at surfaces, 
the bond breaking and making process is often described by a particle tunnelling 
through a region of the potential energy hypersurface [7]. In this case, the potential 
barrier has its origins in the electronic interaction between the gas atom and those 
atoms comprising the surface. These surface atoms are not stationary but undergo 
oscillations, either due to zero-point motion or corresponding to their excited states, 
and therefore the potential barrier has a time dependence, in amplitude and position, 
which is characterized by a surface vibrational frequency. The problem is also of an 
intrinsic interest as it corresponds to solving a parabolic partial differential equation 
subject to space-time-dependent boundary conditions. 

In this paper we consider a general theory of tunnelling through time-dependent 
potential barriers, particularly with an oscillatory time dependence which is confined 
to a finite spatial region. The development of the paper is as follows. In section 2 we 

0305-4470/91/153533+ 18$03.50 0 1991 IOP Publishing Ltd 3533 



3534 A Pimpale et al 

consider the problem classically and compare and contrast an oscillating amplitude 
with a spatially oscillating rectangular potential harrier. Classically, the two barriers 
behave in different ways, in the former case there being no change in the particle 
energy as it is reflected by the barrier, whereas for a spatially oscillating barrier the 
particle energy changes due to collision with the moving barrier, the energy change 
being dependent upon the exact time of collision. In section 3 we formulate the problem 
quantum mechanically and show that for both kinds of time dependence the quantum 
situation is similar in contradistinction to the classical case. The oscillating rectangular 
barrier is then discussed in detail in section 4 and it is shown that the transmission 
and reflection coefficients are independent of the choice of time origin (i.e. the phase 
of the oscillating potential) although the details of the wavefunction in the barrier 
region are dependent on it. Some exact numerical calculations are presented in section 
5 and conclusions are summarized in section 6. An appendix is devoted to approximate 
analytical approaches for solving the time-dependent Schrodinger equation in the 
presence of an oscillating potential. 

Throughout this paper we have considered only one spatial dimension. 

2. Classical modelling 

~ n t :  ciassLwi n iu~~ui i  UL pdruuc is guvcrncu uy ~ i i c  I U W ~  cquauuna ui Iuuuun. L L  Lnc 
time-dependent potential is confined to a finite spatial region, say R, away from this 
region a local constant of motion, energy, can be defined. If the initial conditions are 
such that the particle always remains outside 8, the time-dependent potential has no 
effect on such solutions of the equations of motion. However, when the particle 
trajectory approaches ?X and enters it, the motion is affected. Eventually, the particle 

in terms of the initial energy, being also dependent upon the choice of time-origin. 
When the time-dependence is oscillatory one can average over the choice of the 
time-origin in one time period. We now consider two simple models of rectangular 
barriers with sinusoidal time-dependences. 

-_ .*...:.., -<-.A:-,- ' _1 L.. .L^ ,^^^, :.-. -c--.:... .P.L. 
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This model is described by a potential [2+ v, cos(wt++) O S x S a  
V(X, 1 )  = 

x < O a n d x > a  

where Vo> VI are assumed positive. A particle of energy O <  E < V,- VI is confined 
either to the ieft or to the right of ihe barrier for aii iniiiai condiiions and choices of 
time-origin (i.e. value of 4). When E 25 V,+ V, classical motion is permissible over 
the entire real line. Assuming that the particle of energy E comes from the left at x = O  
at f = O ,  it will emerge at x = a  at time T with energy E +  V,{cos(wT+d~-cos +}, 
where T is given by a / J 2 ( E  - V,- V, cos + ) / m ,  m being the mass of the particle. 
Thus the energy of the particle can vary between E -2V, to E +2V, for appropriate 
vaiues of T and 4. *%en the iniiiai energy Vo- V, < E i Vo+ VI, the pafiiik wi:: be 
reflected for some values of 4 but traverse the barrier for other values of 4. In all 
cases there is no change in particle energy when it is reflected at the barrier, and 
following traversal the energy change corresponds to the barrier height at the instant 
of crossover. 
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2.2. Oscillating position potential 

This potential is given by 

V ( x ,  t ) =  U ( x - a  cos(wt++)) (2) 

where U ( x )  is a rectangular barrier of height V, and width a :  

The region % now is time-dependent and extends from a cos(wt++) to { a +  

Consider a particle of energy E and velocity x > 0 incident from left of the barrier. 
Without loss of generality, we choose the time origin such that the particle is at x = -a 
at t = 0. Let the particle encounter the barrier at t = T >  0 given by 

a cos(ot++)}. 

-a+xo,T= a cos(wT++). (4) 

The velocity of the barrier at this instant is 

ub= - a w  sin(w’F++) ( 5 )  

and the relative energy of motion between the particle and the barrier is 

E,, = fm(x,-  Q,)’. (6) 

The particle is reflected at the barrier if ERd< V, and it crosses over the barrier if 
E,, > V,. Note that unlike the oscillating amplitude case, for sufficiently high frequency 
w, one can always have E,,> V,. Also, when the particle is reflected, it suffers a change 
in laboratory kinetic energy given by 

(7) P E  =fm{(-x ,+2ub)’ -x~1 = 2mub(ub -io). 

When E,,> V, and the particle enters the region 8, the relative velocity uRd between 
the particle and the barrier is given by 

fmukd = E,, - V, VRd > 0 (8) 

and the velocity of the particle in the laboratory is 

X ( t >  T )  = x, = uRd- Ub. (9) 

The particle moves inside % with constant velocity i , ,  until it collides with either the 
left or the right wall of the barrier at time, say, T, or Ti > T given by 

-a + i o ~ + i ,  T, = a ~ O ~ ( ~ T +  + +) 

for collision with the left wall or 

- a  + i o , T + i ,  T :  = a + a cos(oT+wT; + 4)  

for collision with the right wall, whichever comes first. The particle then emerges from 
the region % with changed energy due to the potential step V, as well as the relative 
time-dependent velocity at the instant T,  or T i .  The situation is depicted schematically 
in figure 1. 
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, I Barrier 1 

I Distance 'x' 
I 

Figure 1. Schematic classical trajectories for a panicle in an oscillating rectangular potential 
barrier for diRerent phases +. 

3. Quantum mechanical formulation 

The time evolution of the wavefunction is governed by the Schrodinger equation 

i f i -= Jd4x3 X$(X, 1 )  (10) 
at 

where the Hamiltonian operator is 

-h2  J' 
w x ,  f )  == s+ V(X, 1 ) .  

When the potential is an oscillatory function of time with a period 2rr/w, the 
Schrodinger equation is invariant under the transformation 

27r 
t+t+--. 

w 

Applying Floquet's theorem [SI, the wavefunction has the form 

$(x, t)=exp(ivt)@(x, t )  (12) 

where v is a constant and @ has the periodicity of the potential 

@(x, t + 2 r r / w )  = N x ,  1) .  (13) 

Expanding @ in a Fourier series we get 
m 

$(x, t ) =  1 exp[i(v+nw)flF,(x) (14) 
" I -m 
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where the F, are the various Fourier coefficients. Noting that ihJ/J t  is the energy 
operator, then the nth term in (14) corresponds to an energy of h u f n h w .  One can 
qualitatively interpret (14) as a particle with an initial energy E = hu developing an 
energy spread due to interaction with the time-dependent potential. 

For the oscillating amplitude potential of ( I ) ,  the Schrodinger equation can be 
explicitly solved [Z]. The solution is given by (14) with 

where p 2 / 2 m  = hu 
is omitted for simplicity. 

E and J,  are the Bessell coefficients. In (15) the phase factor 4 

We now consider time-dependent potentials of the form 

V(x,t)= U(x-g(t)) .  (16) 

g ( t ) = g ( t + 2 r / w )  

g ( t ) = a  cos(o t+4) .  (17) 

For oscillatory potentials of the above form 

and for sinusoidal time-dependence as in (2)  

It is convenient to make a non-Galilean transformation to a moving coordinate frame: 

x +  x'= x - g( t )  ( 1 8 a )  

f +  t ' =  t ( 1 8 b )  

*- *'= *(x', f ' ) .  ( 1 8 ~ )  

Dropping the primes for simplicity, (IO) then becomes 

where 

:::a) C,.,  - A " l * \ l A * =  r: 
J \ ' I  - Y 6 \ , l l  " I  - 6. 

Equation (19) could be rewritten as 

J 
-ih--mf +(I + =  ih-+fmf2 $. [k( d x  l2  3 [ ,"t 1 

The usual quantum identification of momentum and energy in the moving frame as 
-ihJ/Jx and iha/at in (20) gives us back the energy-momentum dispersion relation. 

We next consider an application of (18). 

4. Tunnelling through an oscillating potential: exact solution 

Equation 18 can be solved exactly for the oscillating position potential of (3)  in different 
spatial regions. The solution is of the form 

x >  0, x < 0 (21) 1 $(x, t )  =exp(ipx/h) exp 
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where 

p2/2m = E (22) 

Using (17) for g ( f )  and Fourier expanding (21) we recover (14) for the wavefunction, 
with the Fourier coefficients given by (15). Thus although classically the two models 
of sections 2.1 and 2.2 are quite different, quantum mechanically they are rather similar. 

For P >  0, (21) represents a wave moving from left to right. Considering a reflected 
wave at the boundary x=O and a transmitted wave for x > a ?  the wavefunction in 
different regions can be written as 

e x ~ [ i ~ ( x + g ( f ) ) l f i l +  R exp[-ip(x + g(O)/fil ( x < a )  

exp[ip(x+ g ( f ) ) l  fil ( x > a )  

x A exp[iq(x+ g( f ) ) l f i l+  B exp[-iq(x+g(f))/h] (O<x< a )  

(23) 
[ 

where g( f )  is given by (17) and 

$/2m + v, = E: (24) 

In the tunnelling context, E < V, and 9 is pure imaginary. 
It is not possible to apply the wavefunction continuity conditions at x = 0 and x = a 

for all times to get the constants R, A, B and T However, it is possible to write down 
these conditions at a particular instant, say f = 0. We then get four linear inhomogeneous 
equations for the four constants which are dependent upon the choice of time-origin 
through the arbitrary phase 4. It is straightforward to solve these equations for the 
reflection and transmission coefficients R and T: 

R = 2i exp[ip(a + 2 a  cos @)](p2- q2) s in(qa) /D (25) 

and 

T = -4pq/ D (26) 

with the denominator D given by 

D =  -exp(-ipa)[4pq cos(qa)-2i(p*+q2) sin(qa)]. (27) 

In (25) and (27) we have set fi = 1 for simplicity. 
It is interesting to note that the transmission coefficient T is independent of the 

phase 4 and thus insensitive to the choice of time-origin. This situation has been 
observed earlier by Buttiker and Landauer [3] but is shown here explicitly for the first 
time. Since p is real, the reflection coeflicient R depends upon 4 only through a phase 
factor. The coefficients A and B giving the wavefunction inside the barrier are more 
complicated function of 4. It is readily seen that 

J R J ’ + J T J ~ =  I .  (28) 

Equation 28 is really a consequence of Hermiticity of the Hamiltonian which is not 
affected by the time-dependence of the potential. 
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5. Numerical results 

We now consider the problem ofa  Gaussian wavepacket incident upon atime dependent 
barrier. For simplicity again only one spatial dimension will be studied. This sort of 
problem has been studied on many occasions in connection with the definition of the 
‘correct’ procedure for calculating the tunnelling time [9]. Although this is a worthy 
debate, we prefer not to be drawn into this discussion but instead will investigate how 
the tunnelling probability is connected with the two timescales (i) the round-trip of 
the scattered particle and (ii) the period of the barrier oscillation. 

5.1. The oscillating position barrier 

Specifically we consider an electron scattered by a Gaussian shaped barrier which falls 
into the class given by (2), namely an oscillating hat potential, 

(29) 
For all that follows the height of the barrier, V, is 200 au and the width parameter, U 
is 1.0 au. The electron energy, E, the amplitude, A, and frequency, w will be the subject 
of the investigation. The initial wavepacket is given by 

V ( x ,  1 )  = V, exp{-u[x - ( x o + A  sin(wt + +))I2}. 

where xi is its initial position, px its momentum and S its width. S was chosen to be 
0.5 au which is an optimized value to give the packet a relatively narrow energy spread 
while still fitting in a box of length 15 au. To solve the time-dependent Schrodinger 
equation, equation 10, the split operator method of Feit et a1 [lo] has been employed. 
This method has been applied many times to surface scattering problems of this kind 
and for details the interested reader is referred to literature [ll-131. It need only be 
mentioned that the method is particularly efficient and is norm conserving. 

Figure 2 shows the behaviour of the tunnelling probability as a function of the 
initial electron energy, T ( E ) ,  for three different values of the barrier frequency 

B 
2 
E O 4  

e 0 2  

00 

Energy (au) 

Figure 2. Transmission probability for a panicle incident on an orcillating position barrier 
as a function ofthe initial translational energy. Results ace presented for both high (U =30) 
and I O W  ( Y = 0) frequency limits as well as a representative phase (4 = 0) at an intermediate 
value ( p = 5 ) .  For this care, the panicle interaction time and the barrier period are similar 
resulting in an interaction which depends markedly on the initial phase of the barrier. 
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u (=w/257)  when the amplitude of oscillation is 0.5 au. To set a time scale, the duration 
for the packet to make a round trip at an energy of 150 is -1.711 atomic time units. 
The static barrier represents the low frequency limit and has a well known sigmoidal 
dependence for T( E) which can be found in any elementary quantum mechanics text 
book [14]. It is a general result that for barriers which are not discontinuous, the 
tunnelling probability is approximately 0.5 at the energy corresponding to the barrier 
height. This is indeed the case here and the results are in good agreement with those 
obtained from a time-independent calculation. 

When U = 30 oscillations per atomic time unit, then the high frequency limit has 
been reached and increasing U causes no change to T(E),  results are also independent 
of the initial phase of the barrier, 4. There is a marked shift in the tunnelling to lower 
energies, implying that the barrier motion serves to reduce the barrier height. This is 
simple to understand on the basis of a time-independent potential defined by 

Figure 3 shows V ( x )  for a range of different values of A. The barrier becomes smeared 
out in the x coordinate and is significantly reduced in energy. If the amplitude is in 
excess of 0.5 au then V ( x )  begins to have a bimodal structure which is an indication 
that the turning points are sampled preferentially in the average of (31). The rule of 
thumb mentioned above appears to hold in that 50% tunnelling probability occurs at 
the value of - 125 au, as seen in the effective potential corresponding to A = 0.5 au. It 
is also clear that the U = 30 curve is somewhat steeper than that for U = 0. This is 
because of the broader barrier experienced at the higher frequency. Calculations for 
T(E)  based upon the static effective potential were identical with those for U values 
330, thus confirming the notion of a Born-Oppenheimer separation of timescales for 
particle and barrier motion. 

Finally, and most interestingly, the transmission probability for a barrier of 
frequency U = 5 is shown in figure 3 and bears almost no resemblance to those for the 
high and low energy limits. Naively it might have been expected that this may lie 

Figure 3. The time averaged potential ( 3 1 )  for a variety of amplitudes. When the period 
of the barrier is short, the particle cannot respond rapidly enough to changes. As a 
consequence the wavepacker interacts with a lower effective barrier (see figure 2). 
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between the w = O  and 30 curves but this is definitely not the case. The results now 
become particularly dependent on the initial phase, $, of the barrier and to illustrate 
this point, figure 4 shows the phase dependence of T(E) for U values of 1, 2, 5 and 
10 for an electron with energy 80 au. For U = 1, the results are almost +-independent, 
similarly for U = 12. For U = 2, however, the transmission probability weakly depends 
upon $ varying between 0 and 0.1. For U = 5 this dependence has become strong with 
values ranging between 0.8 and 0.2 in a sinusoidal manner. The reason for the strong 
$ behaviour in the range 2 < U .c 12 is that a separation of timescales is now no longer 
valid and the outcome of the scattering event depends precisely upon the dynamics 
during the interaction. To investigate this in more detail, it is useful to examine the 
time dependence of  the potenial and kinetic energies as the collision occurs. 

Figure 5 shows the time dependence of the expectation values for the kinetic, 
potential and total energy during a collision of an electron with E = 80 au on a stationary 
barrier. As the wavepacket begins to sample the barrier, kinetic energy is converted to 
potential energy until a time of -15 au when the reflected particle moves out of the 

1 
0 lm m 3m 

Initial phase of barrier 

Figure 4. The transmission probability as a function of the initial phase for the oscillating 
position barrier. For low and high barrier frequencies, results are insensitive to the phase. 
When the period of the barrier and the particle interaction time are comparable ( Y = 5)  
there is a substantial dependence. 

I 
0 50 IW 1 y I  20) 

Time (au) 

Figure 5. The time dependence of the expectation values of kinetic, potential and total 
energies for a wavepacket with energy 80 au striking a stationary Gaussian barrier of height 
200 nu. 
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region of interaction. For this case, energy is conserved and the transmission probability 
is zero. 

=ZOO" 
and 30" which correspond to minima and maxima in T(E) .  In figure 6 ( a )  there is an 
initial increase in potential energy at 50 au as the particle 'strikes' the barrier. Accom- 
panying this, is a dramatic decrease in the kinetic energy which far outweighs the 
increase in potential. What is happening is that the particle suffers a collision with a 
receding barrier and almost comes to a halt. When the barrier returns, during the next 
cycle, the wavepacket is then reflected with a reduced energy of E = 30 au. The collision 
is highly inelastic and the transmission probability is zero. In figure 6 ( b )  there is only 
one peak in the potential energy curve implying a single 'strike'. As for the stationary 
barrier case, the kinetic energy falls as the collision occurs but with a modest phase 
lag with respect to the potential maximum. The particle strikes an approaching barrier 
which at the centre of its oscillation would imply, from (61, a relative kinetic energy 
of 179 au. This gives rise to a small tunnelling contribution of -10% with a mean 
transmitted energy of 124 au. The reflected flux has also picked up momentum from 
the barrier and has a mean energy of 244 au. 

Figures 6 ( a )  and ( b )  show similar plots, but for the cases when Y = 2 and 

a. 

b. 

Figure 6. As figure 5 but for the case of  an oscillating position barrier with frequency Y = 2. 
In ( a ) ,  at the time of  the first collision, the barrier is moving away from the panicle and 
hence the impact velocity is small. This results in a transfer of  energy IO the barrier and 
a low value of  the transmission probability (figure 4). In ( b ) ,  however. the panicle 
and barrier are moving together at the time of the first collision resulting in a net energy 
gain by the panicle and a higher transmission. 
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As the frequency is increased, more structure appears in these energy plots and 
an example, for U = 5 is shown in figure 7. Again phases corresponding to the maximum 
and minimum transmission probabilities have been chosen. Figure 7 ( a )  shows the 
energies for an initial phase of 320' which corresponds to a transmission probability 
of 23%. The potential energy shows two peaks, each of which represents the wavepacket 
being struck by the barrier. For the initial encounter there is a significant drop in 
kinetic energy which this time is in phase with the increase in potential. This choice 
of phase results in an initial strike when the oscillator is moving towards the particle 
and between 5 and 10% tunnels at this time. The bulk of the packet is slowed up and 
after -100au it receives another impact which reflects -77% and also produces a 
second pulse which tunnels through the barrier. The time delay between the two 
encounters corresponds to the period of the barrier. Again the overall collision is 
inelastic with the final mean energy -120 au. For the case of maximum transmission, 
figure 7 ( b )  is for an initial phase of 140" and has a simpler structure with only a single 
collision taking place. There is an initial encoutner after 25 au which is with a receding 
barrier and, as  before, the particle is slowed up. In the next cycle the barrier passes 
right through the wavepacket, trapping a sizeable fraction (-77%) on the transmitted 

b. 

1 j ' 5 ;  ''\\,, Potennoi mew 1 
...................... i ............................................... 

Tlme @U) 
50 im Is0 m 

Figure 7. As figure 5 but for the case of an oscillating position barrier with frequency Y = 5. 
Results are similar to those in figure 6 but now in both (a) and ( b )  the period of the barrier 
is shon enough such that the particle sunen multiple interactions as evidence by the peaks 
in the potential energy profiles. See the text for a full description of both events. 
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side. This is a highly inelastic collision with the reflected and transmitted components 
having final mean energies of -220 and 60 au respectively. As the frequency increases 
to even larger values, T(E)  becomes independent of phase because there are so many 
collisions that the initial conditions are unimportant. 

It is possible to average the transmission coefficient over the phase and figure 8 
shows results for U = 0 , 2 , 5  and 15. For those frequencies in the range 2 3 v 3  12, there 
are two main features in the T(E) curves to comment upon. At low energies ( E  < 100 au) 
there is enhanced transmission over that obtained for frequencies lying above or below 
this range. This occurs because, for a range of phases, the barrier is moving towards 
the particle and thus the barrier appears to be lower. As shown above this effect is 
quite considerable and for an 80 au beam, can result in relative energies two and three 
times this value. The converse is seen for energies E > 200 au, where the transmission 
probability is considerably lower than either the static or the high frequency result. 
This arises from those phases which have a barrier moving away from the wavepacket 
during the initial encounter, giving rise to a lowering of the translational energy and 
thereby reducing the transmission. This effect is seen quite clearly in the phase portraits 
shown in figure 4. 

1 
0 53 ,m 150 m 250 m 

Energy (au) 

Figure 8. Transmission probability far a particle incident on an oscillating position barrier 
as a function of the initial translational energy. In this case the probabilities have been 
averaged over the initial phase of the barrier which makes a substantial difference only 
for the Y = 2 and 5 cases. The enhancement at IOW energies is accounted for by collisions 
where the barrier and panicle are moving together at the time of the initial impact. 

Finally it is interesting to examine both the real and momentum space probability 
distributions during the scattering event to see if the conclusions presented in section 
3 are borne out. In particular, it should be possible to trace the dynamic origins of 
the fine structure predicted in (14). Figure 9 shows a time-lapse sequence for a 
wavepacket with E = 200 au striking a barrier oscillating with frequency 15. Both real 
and momentum space are shown and the times are indicated. The momentum space 
plots are perhaps the more revealing of the development of the collision. Starting with 
a sharp Gaussian at f = 0 a low energy tail begins to develop as the packet impinges 
on the barrier. In the central frames, the packet undergoes several strong collisions 
and a series of well defined peaks appear for positive momenta. The real space sequence 
shows that the packet is undergoing severe distortion as it traverses the barrier and a 
fine structure emerges for long times. Figure 10 shows a blow up of the asymptotic 
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Real IPOCB Momentum lwce 

Figure 9. A time-lapse sequence for the scattering of a panicle with energy 200 au from 
an oscillating position Gaussian barrier with height 200 au and frequency Y = 15. The figure 
clearly shows the development of the fine structure in momentum space appearing in the 
transmitted flux. Frames are at a constant time interval of 0.066 ay. 

I J 
0 m dm bn Bm laoIm1i .m 

Energy (au) 

Figure 10. A blow up of the frame 8 momentum space distribution shown in figure 9. This 
has been re-plotted on an energy scale in order to show the equally separated satellites 
appearingtothe high energyside oftheelastically transmitted line. The energeticseparation 
is 2nu au, the elementary excitation energy of the moving barrier. 

transmitted packet plotted in energy rather than momentum space. This shows a very 
well resolved set of decaying peaks each separated by w which is a manifestation of 
the superposition given in the wavefunction of (14). The number of quanta that have 
been excited is related to the length of time that the packet stays in the region of strong 
interaction which for the conditions in figure 10 is 9 cycles. 

5.2. The oscillating amplirude barrier 

Now we consider a potential of the form given by ( l ) ,  a Gaussian barrier whose height 
is oscillating sinusoidally 

(32) V(X, 1 )  = V,(I + A  sin(wr + 4)) e-c[r-xJ*. 
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Values for the constants were chosen to be those used above; A = 0.5 au, Vo = 200 au 
and v = 1.0 au. Again 8 was chosen to be 0.5 au. 

For the Y = 0 limit of the oscillating barrier, the results are insensitive to + since 
this simply acts to displace the origin of the packet. For the oscillating amplitude 
barrier there is a necessity to phase average even the Y = 0 transmission probabilities 
since each value of 6 defines a new potential. Figure 11 shows the phase averaged 
T ( E )  for frequencies of 0.5 and 15. In the high frequency limit, which again obtains 
for Y 3 15, T ( E )  is identical with the static barrier case. This is not a surprising result 
since by time averaging the potential defined by (32) one regains the static barrier of 
height V , .  Unlike the oscillating position barrier, there is a much weaker mechanism 
for increasing and decreasing the relative energy of the scattered particle with respect 
to the barrier, and the strong +-dependence now arises because for some phases a 
judiciously low barrier is encountered. Figure 12 shows the phase dependence of the 
transmission probability for an energy of 200au and frequencies 1, 2, 5 and 10. 

I ~m 150 2m 250 m 350 

Energy (au) 

Figure 11. The phase averaged transmission probability for a panicle incident on an 
oscillating amplitude barrier as a function of the initial translational energy. The barrier 
height is 200 au. This form of oscillation does not give rise to any Doppler shift i n  panicle 
velocity and as such the results are less dramatic than those for the oscillating position 
barrier shown in tigure 2. 

I J 

lnitlal phose of barrier 
im m m 

Figure 12. The phase dependence of a panicle with 2OOau energy on the Oscillating 
amplitude barrier described in tigure 11. T h e  strong variation with the phase of the barrier 
simply arises from the distribution of barrier heights. 
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Interestingly enough the phase averaged value of T ( E )  for this case is independent of 
v. While this is not a totally general result, calculated u-dependences in the phase 
averaged T ( E )  tend to be weak. This is interesting because although momentum can 
be gained and lost in the scattering event, on average this does not drastically change 
the transmission probability. 

6. Conclusions 

We have presented a variety of solutions for the problem of a particle interacting with 
a moving barrier. It has been shown that depending upon whether the barrier amplitude 
or position oscillates, the solution to the classical problem is rather trivial but different 
for the two cases. Surprisingly the quantum solution appear remarkably similar. An 
exact solution has been found for the transmission coefficient for a plane wave incident 
on a spatially oscillating rectangular barrier. This problem is one that has been 
extensively studied in connection with the tunnelling time problem. Numerical simula- 
tions have been performed for a Gaussian wavepacket incident on a variety of oscillating 
barriers. In general, results show that there exist three distinct regions of solution 
depending upon the relative time scales of the particle velocity and the period of 
oscillation of the barrier. While the high and low frequency solutions are straightforward 
to understand in terms of static effective potential, when the two timescales are 
comparable then there exists a wide range of interesting dynamical effects. 
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Appendix. Analytical approximations 

In this appendix we investigate some semiclassical aspects of the time dependent 
barrier problem. 

( a )  WKB Approximation for ID time-dependent potentials 

Put the wavefunction in the form 

$(x, 1 )  =exp[iS(x, Wfil (AI) 

in the time-dependent Schrodinger equation. In the zeroth-order (terms independent 
of h )  we get the Hamilton-Jacobi equation for the action S: 

as 2 L(3 +V(x, t )+-=O.  
2m ax d f  

A simple way to solve (A2) is to consider a corresponding set of ordinary differential 
equations as shown, for example, by Courant and Hilbert [15]. With some algebra we 
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then obtain the following four equations: 

d x l d t  = p/m 6430) 

dS/dt  = p2/m + q  (A3b) 

d p l d t  = -av/ax (A3c) 

d q / d t =  -aV/a t  (A3d) 

p = aslax q = as/at. (A4a, b )  

... I. --. 
WIICCC p,  q aie defiiied by 

One integral of the system (A3) is directly given by the left-hand side of (A2) equal 
to a constant. Thus, to get the action, this constant must be set to zero, i.e. 

(AS) p2/2m + v(x, I) + q = 0. 

When the potential is independent of time, (A3d) is immediately integrated as 

q=constant=-(p2/2m+ V)=-E (A6) 

where E is the system energy. The action S is then readily obtained in the well known 
form 

(A7) 

=-EI+J  ~dx{2m[E-V(X)]11" ('48) 

where L is the Lagrangian 

L = p 2 / 2 m -  V ( x ) .  

equation (A7) remains valid for time-dependent potentials, but its separation into 
space and time parts, as in (AS), is no more possible. Explicit calculation of S can be 
carried out in simple cases. The special situation 

Vlr , I = l T ( % . l L V < % .  11 . ,-, . I  ."\-, ' . , \ - , . I  

where V, is 'small' in comparison with V, has been discussed by Zhang and Tzoar [6]. 
We now consider the case when the potential is of form (16). Making the coordinate 

transformation as in (18) and dropping the primes afterwards, equations (A3) become 

d x j d t  = p j m  -f ( I )  L49a) 

d p j d l  = - d U / d x  (A9c) 

d q / d r = f ( l )  d U / d x  (A9d) 

dSjd1 =pi /m + q (A9b) 

where f is given by (19a). Solutions of (A9) satisfying the modified (AS), i.e., 

p ' j im + u ( x j + q  = 0 (Ai61 

give the action S (in primed coordinates). Eliminating p between (A9a) and (A9c) 
we get 

( A l l )  m d2x/d t2  = -d Ujdx  - mg. 
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Thus the motion in the moving reference frame corresponds to a conservative force 
due to potential U and an external force -m& lntegration of ( A l l )  gives x = x ( f )  
which can be used in ( A 9 c )  to get p ( t ) ;  q( t ) ,  then, is given by ( A 1 0 )  and quadrature 
of ( A 9 b )  would then give the action S. 

(b) Eigenfunction expansion 

We now consider an approximate way of solving the Schrodinger equation in moving 
coordinate frame given by (19) .  Assuming that U ( x )  is Hermitian, let @&) be a 
complete set of eigenfunctions satisfying 

- h Z  d2@k 
- -+ U ( x ) Q k ( x ) =  E k @ ,  
2m dx2 

(@.XI@*') = s k k ' .  ( A 1 2 a )  

We have assumed the index k to be discrete for simplicity; the continuum case can 
be readily dealt with in an analogous manner. Expand the wavefunction 

#(x, t ) = x  ck(t )@D,(x)  ( A 1 3 )  

where the unknown coefficients C,(t) are to be obtained. Substitute ( A 1 3 )  in ( 1 9 )  and 
use ( A 1 2 )  and ( A 1 2 a )  to get 

k 

i h  dCk/dt  = CkEk - f ( t )  1 Pkk.Ck. ( ~ 1 4 )  
k' 

where Pkk, are the momentum matrix elements in the mk representation: 

Pkk.= d x  @$(x)(-ih J/Jx)@,.(x). I 
Equation (A14) can be written in the eatrix form by introducing a column matrix 
C = { c I  ~. . , c k . .  .), a diagonal matrix E =diag(E, . . . , E x . .  .) and the momentum 
matrix P with elements Pkk, as 

ih d e / d f = [ b / ( t ) p ] e .  ( A W  

- 

A formal solution of ( A 1 5 )  is readily obtained as 

E ( t ) = e x p  - ( B - g ( t ) B )  E, (A161 

where the constants in the column vector eo a'e to be chosen to satisfy the requisite 
initial conditions. Note that in general E and P do not commute. The form of ( A 1 6 )  
shows that, with real g (  I ) ,  the wavefunction normalization does not change in time, 
Explicit calculations can be carried out using ( A 1 6 )  when the number of eigenfunctions 
involved in the expansion ( A 1 3 )  is restricted to a suitable finite number. 

I I 
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